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1~ 1. INTRODUCTION

This report describes an algorithm and a computer program for general
Gaussian numerical integration (quadrature). The algorithm is based on
developing approximations of the form

1

b 
w(x) f(x) dx H f(x)

In this paper, we view the integration as the integral of f(x) with re-
spect to a weighting function w(x), rather than the integral of a func-
tion w(x)f(x). These approximations can be developed for a wide class of
weighting functions. For a somewhat more restricted class of functions,
these approximations significantly improve program execution time over
the time needed by more traditional programs.

The program to be described was developed as part of an investigation
of the coherence properties of reflected laser light. This investigation

• involved the evaluation of integrals with highly oscillatory integrands.
By appropriately incorporating the oscillatory factors of the integrand
in the weighting function, the execution time for evaluating these inte-
grals was reduced by nearly two orders of magnitude from that needed by
an existing classical Gaussian. integration program. 1

The program developed in this report has wider applicability than
removing oscillatory factors of an integrand. Many numerical integration
programs either cannot be used at all or are unreliable w~r ai integrand
contains discontinüities or singularities in the interval u~ integration.
The algorithm presented here can be used reliably when the undesirable

• behavior of the integrand can be incorporated in the weighting function.
Conditions under which this can be done are given in section 2.

2. BACKGROUND THEORY

By far the most common approach to evaluating integrals of the form

= 

.L

b
w~~~f~~ dx

consists of approximating f(x) by some polynomial P (x) of degree n - 1
• and evaluating n-i

‘A. Hausner and J. D. Hutchinson, FOGIE : An Adaptive Code for
Numerical Integrals Using Gaussian Quadrature, Proc. 1975 Army Numerical
Analysis and Computer Conference, Army Research Office Report 75-3
(1975), 139—177.
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b
I I w ( x ) P  (x) dx

J n-l
a

The polynomial ~n-l (x) is obtained by choosing n points ~x~I i = 1,
n } and forcing P~_i (x~

) = f (x 1) for all i. P~ ..1(x) is termed a
collocation polynomial for f(x). Typical of integration schemes is to
require {x1} to be equally spaced over the interval (a,b) (such as
Simpson’s rule) or require that {x1} be chosen so that I can be
approximated a an unweighted average of {~~ .-i (xj)) (={f (x1) }) (such as
Chebyshev ’s rule) . This section outlines the theory of orthogonal
polynomials as it applies to numerical integration and approximation . It
then shows how this theory leads to an “optimal” choice for
abscissae {x1) and weights ~Hj).

We consider a sequence of polynomials {Q0(x), Q1(x), . . .}, where
Q~ (x) is a polynomial of degree n in x with real coefficients. We
define such a system to be orthogonal on (a,b) with respect to the
weighting function w(x) if

Co ,m ~ ’n, m, n > 0
I w (x ) Q (x )Q (x) dx =.(
-~~ m n 1h 2 , 0 c h2 c ~~, in = n > 0

—

For a given interval (a,b), -such a system exists if and only if two con-
ditions hold for the weighting function. The first is that

w(x) > 0 , a < x < b

and the second condition is that all integrals of the form

b
I. 2.

~ 
x w ( ~ ) dx

4

must exist.

Several properties of systems of orthogonal polynomials allow devel-
opment of integration schemes. First, an arbitrary polynomial of degree
n can be expressed ~s a linear combination of Qi(x), i = 0, 1, . . ., n.
As a result of this, any orthogonal polynomial Qn(X) is orthogonal (with
respect to the weighting function) to all polynomials of degree less than
n. Another property of orthogonal polynomials is that each Q~ (x) has n
distinct real roots, all of which lie in the orthogonality interval. This
property is very important since the roots of Qn(x) become {xj} for
approximating integrals with an n—point formula. Finally, a system 

of6
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orthogonal polynomials is uniquely specified to within a multiplicative
constant by the weighting function and the interval of integration.

• From these properties of orthogonal polynomials, an interesting
result can be derived. Firstly, evaluating an integral I by an n—point
summation is equivalent to approximating f(x) by a collocation polynomial
of degree at least n — 1. Abscissae (xi). i = 1, . . ., n, can be taken
as the roots of Q (x), the nth degree orthogonal polynomial. PA (x) and
P5(x) are two col~ocation polynomials for f(x) of order less than 2 n
such that

• P Ix.\ = P (x\ = f(x~\ , i = 1, . . ., n
• A \ ]./ B~~ 2.) ~~~i/

( from the definition of collocation polynomials). Because of this, we
observe that

P (x) - P (x) = Q (x) w (x)
A B n n-l

where lTfl_ 1 (x) is a polynomial of order at most n - 1. (Q~ (x) is a
factor of the difference polynomial because each x1 is a root of PA (X) -
PB(x). Also, since PA (x) and PB(x) are assumed to be polynomials of
order less than 2n and Qn(X) is of order n , lr~_1(x) can be of order at
most n — 1.) Considering the difference in the estimates of the integral
using collocation polynomials PA

(x) and P
B
(x).

J w(x)P (x) dx - j  w(x)P8(X) = w(x)Q~ (x) 1T~~1
(x) dx = 0

The last step follows because of the orthogonality property of the or-
thogonal polynomials. This is the desired result. It shows that
if {xj} are the roots of orthogonal polynomial Q~ (x), all collocation
polynomials of order 2n — 1 or less collocated with f(x) at {x~} yieldthe same estimate for the integral.

Now a formula may be developed for the approximation to the integral.
Once the order , n , of the approximation is fixed, the Lagrange interpola-
tion formula2 can be used as a collocation polynomial of degree n - 1,

L(x) = ~~~ l . f (x )
ia]. ~

2Petr Beckmann , Orthogonal Polynomials for Engineers and Scientists,
The GoZem Press, Boulder, CO (1973).
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• F- where

— 
(x - x

1)(x 
- x )  . . . (x - x~~1)(x 

- x~~1) 
. . .(x — x )

- • i 
— 

(x~ 
— x

1)(x~ 
— x

2) 
. . . (x~ — x

~..1)(xj 
— x

~+1) 
. . .(x~ — x~)

This polynomial can be written3

n Q (x)
L(x) = 

~j (x — x~)Q’(x.) 
f(xi)

where QA (xj) denotes the first derivative of Q5(x) evaluated at x1. Our

~stimate of the original integral can now be expressed as

1

b 
w(x)f(x) dx~~~f 

w(x)L(x) dx = f  w(x) 
~~ (x - x1)Q~(x1) 

f(x~) 
dx

n b w(x)Q (x)

i~ l 
f(x~) [Q~~~

X
~) 
j  x - ~~ 

dx]

which can be written

b nf  w(x)f(x) dx ~ H i f(X~
)

where
b w(x)Q (x)

1 j  dx .
i Q’(x~) a x~~~x~

Given a weighting function, an integration interval, and a system of
orthogonal polynomials for w(x) on the interval, the (Xj} and (Hi) can be
calculated independently of f(x). Additionally, the approximation is
exact for all polynomials of order 2n - 1 or less. This suggests that
the error of the approximation is bounded by

3M. Abramowitz and I. A. Stegun, ed., Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables, National Bureau
of Standards Applied Mathematics Series, 55 (1970).
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C inf (f~
2
~ - (~)] < f ~j~~)f(x) dx — E~s~f(x~)I ~~C sup[f~

2
~~~( F ) 1 , a < < b

for some constant C , a result that can be rigorously derived.~n
• The approximate integration as developed above is optimal in the

following sense: no approximation exists for which the error of the
approximation is bounded by a higher order derivative of the function

• being integrated. As intuitive argument to support this statement is
• that, since we have n abscissae and n weights for the approximation , f ( x)

is being fit with 2n parameters. The highest order polynomial that can
be fit exactly with 2n parameters is of degree 2n — 1. Thus, no integra-
tion scheme using 2n parameters can exactly estimate the integral of

• arbitrary polynomials of degree greater than 2n - 1. The error cannot be
bounded by a higher order derivative of f(x), for that would imply that
the error for polynomials of degree 2n would be bounded on both sides by
zero.

• The derivation of the integration scheme in terms of collocation
polynomials suggests why oscillatory integrands pose a problem for
numerical integration. How accurately the integration is estimated
depends in general on how accurately the integrand is approximated by the
collocation polynomial. If the collocation polynomial is to approximate
an oscillatory function, many collocation points must be chosen in the
interval of integration to keep the collocation polynomial close to the
integrand function. This problem is closely related to the problem of
sampling in signal processing applications.5 Results from sampling

• theory state that to uniquely define a frequency limited function in an
interval of N cycles of the highest frequency component, 2N + 1 sample
points are needed. Although c--nly approximating an oscillatory integrand
with a collocation polynomial is of interest, the number of collocation
points needed to reduce the error of the approximation below a given
level is a function of the ;iuinber of cycles of the integrand in the
interval. As the number of cycles of the integrand increases, the
number of collocation points also must increase; this increase leads to
costly and at times unreliable estimates of the integral.

~P. J .  Da vis and P.  Rabinowitz, Numerical Integration, Blaisdell,
Waltham, MA (1967).

5J .  W. Tukey, The Estimation of (Power) Spectra and Related
Quantities , in On Numerical Approximation , R • S.  Langer , ed.,  Uni versity
of Wisconsin Pres s , Madison, WI (1959), 389-411.
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The integration scheme outlined in this sect..or alleviates the prob—
lem of oscillatory integrands when the oscillating factor can be absorbed
into the weighting function. A way of absorbing oscillatory behavior
into a weighting function is detailed in section 4. In section 3, we
derive the algorithms necessary to compute abscissae and weights once a
weighting function and an interval of integration are established.

3. COMPUTATION OF WEIGHTS AND ABSCISSAE

This section details specific algorithms to compute integration
weights and abscissae from a weighting function and an interval of inte-
gration. Approximations of the form

J w(x)f(x) dx 
~~~~~~~~~~~ 

N . f(x .)

are being developed. Order n of the estimate is chosen beforehand. In
section 2, the {xi} serve as the roots of Q5(x), the nth orthogonal poly-
nomial on (a,b) with respect to w(x). The weights are then given by

1 
.b Q (x)

Hi 
= 

Q 1( x .)  I x x w(x) dx

There have been several approaches to the problem of calculating
{ X1) and {Hj} from the above equations. For instance, Gautschi6 describes
an algorithm that develops a convergent sequence of approximations to the
abscissae and the weights. The algorithms developed in this report can
be considered a brute force approach. The problem itself is inherently
ill-conditioned.7 However, the availability of extended precision
arithmetic on modern computers allows a straightforward solution to yield
an answer of sufficient precision to be useful in many applications.

The problem here is to calculate the coefficients of Qn (x), obtain
• the n roots of Q~ (x). and finally compute (H~}. Since many library pro-

grams exist for calculating roots of polynomials, the second step of the
problem is not of concern in this report. The algorithm for computing
Q~ (x) may now be derived.

6
~q~ Gautschi, Algori thm 331--Gaussian Quadrature Formulas , CACM , 11,

No. 6 (June 1968). 
—

7w. Gautschi , Construction of Gauss-Christoffel Quadrature Formulas ,
Mathematics of Computation, 22 (1968), 251—270 .
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• First, Q~ (x) can be multiplied by any constant without the roots or

{H~} being changed Thus, the leading coefficient (the coefficient of
xk in Qk (x) J of the orthogonal polynomials may be set to unity. Under
this normalization, there is a classic recursion relationship for orthog-
onal polynomials.2

We have

1~°~.
~f 
Q
1
( x ) = x - B 0

= 
(x 

— B.)Q (x) — 

~
‘i — l  

Q .1 (x) , i > 1 ,

where

h~ = 
b 
w(x)Q2(x) dx

is the so’iared norm of Q.(x) and

B. = h~ I xw (x)Q2(x) dx
2. 1~~~ 1

is the first moment of Q~ (x). This recursion relationship is the basis
for calculating the coefficients of Q (x).

The notation C . . (0 < j < 1) denotes the coefficient of x~ in Q. (x ).
Thus , 1~~J 2.

Q .(x) = C .1 
~~~~ 

1,j

= 1. is the normalizing condition.) We also generalize the defini-
tion of C~ 

~ 
by setting ~~~ = 0 for i < 0, j < 0, or j > i• When the

expansion o~ Q. (x) is substituted in the equation for h~ ,1 2.

2Petr Beckmann, Orthogonal Polynomials for Engineers and Scientists,
The Golem Press, Boul der, CO (1973).

11
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= f  w (x) 

(
~ 

~~~~~~ Q. (X) dx

b b i-l .

= f  W (X )X
:
Q~~(X) dx + f  w(x) (E ~~~~ Q. (X) dx

= J w (x)x Q. (X) dx

= 

j~0 
(C1~~ J w(x)x’~~ dx)

The third step follows because Q (X) is orthogonal to

i—i

~~ 
c .

j=0 
1,]

which is a polynomial of degree i - 1. In the same manner, one can derive

B~ 
C
1,1_1 

+ h
2 

•
~~~~~ 

(C~~~ J w(x)x
i
~
)
~~ dx)

Thus, to evaluate h~ 
and B~ for any Q• 

( x ) ,
1 1 1

E . = I w(x)x~ dx

must be available for 0 < j < 2i + 1. Then

= ~~ C. •E.1 j=O ~~~~ ~~~~~~

and

B
1 

= C~~,~~_ 1 
+ h

1
2 

~~~ 

C1~~
E
1~~~1

12
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• The quantities E~ must be easily calculable for all necessary j.
Since eventually B~_1 will be calculated, values of E~ must be available
for 0 < j < 2n - 1. Then the following algorithm obtains for computing
the coefficients of Q Cx):

n

a. Calculate E .: Evaluate E~ for 0 < j < 2n - 1.
— —

b. initialize recursion: Set C0 o -4- 1 (Q0 (x) = 1); set h~ - E0,
B0 -~~ E1/h0; set C11 1 € 1, C~,0 -B0(~~1~x) = x - B0); set the recursion
counter i ÷ 1.

c. Check termination: At this point, the coefficients for Q. Cx)
have been obtained. If i = n, stop with the answer. Otherwise, condnue
to step d.

d. Calculate h2 and B~ : Set
i 1

C. •E.1 j=0 ~~ ~~ ;

set

B~ ÷ C~,11 
+ 

(j~
O 

C
~~~

E
~+~+l) 

/h~

e. Perform recursion: Calculate the coefficients Q
141

(x). For
each :j~ 

0 < j < i + 1, set

C ÷C - B C  -h 2C lb2
i+l,j i,j—l i i, j .  I i—l ,j 1—1

f. Loop back: Set I ÷ i + 1 and go to step c.

The above algorithm is easily programmable. Caution must be observed in
step e, where the notation uses the generalization of the coefficients to

• C~~~~~~0 form>~~~whenj i a n d j i + l .

The next step is to obtain the roots of Qn (x) . Canned programs for
performing this function are readily available in most numerical analysis
subroutine libraries.8’9 Thus, calculating the {Xj} is trivial. All the
xj are real, distinct, and inside the interval (a,b).

8IMSL Library 1, Editor 6 (FORTRAN IV), IBM 5/370-360, Xerox Sigma
S/6— 7—9—l1—560 (1977).

9IBM System/360 Scientific Subroutine Package, Version III,
Programmers Manua l , IBM GH2O-0205—4 (August 1970).

13 
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Now the H~ can be calculated for each x~. One can easily calculate
Q’(x~). Since

Q (X) = 
~~~ c~
j=0

then

Q~ (x) = Ci + l)C
n j+1

X)

Thus,

Qi(x.) = + i)C ,~ 1
x~

which is easily evaluated.

The remaining step is to evaluate the integral

b Q (x)
I ~‘
I X - X .

1

This integral is expressed in terms of E~. However, first a ~nethod must
be developed to obtain the coefficients of the deflated polynomial Qn (X)/

(x - x1). The notation C~~j denotes the coefficient of x~ in the
deflated polynomial. (The coefficients are functions of x1.) Thus, by

F definition ,

Q (x) n-i
n

~~~~~ j=0 ~~~

(C = 0 for j < 0 or j > n - 1.) We consider the equation

Q (x) Q (x)
n = n 1
x - x  x l - x .I

x

14
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Ignoring for the moment any questions of convergence , one can expand

this expression in a power series in

Q (x) 
= 

Q (x) 

[ 
+ 

~~~~~

. + (

~

4

2 
+ . .

and rewrite it as

Q Cx) n-l . Q Cx) x k

~~~~ ~~~~~~~ 
= 

n ~~~ (ii.) = Qn
C2
~ k~i 

k l k

or

~ 

~~~~~~~ = 

(
~~~Cfl,L

xt) (
~~ 

~k_l~ _k)

On the right—hand side of this equation
, the coefficient of is given

by

— ~~-‘ k—l
C ~~~~~~~~~~~~~~~~~~~~~~~ c

k l  n,j+k

However, since C . = 0 for ~ 
+ k > n,

n ,
n-j

c ~~~~~~~~~~~~~~~~~~~~~~ C . 
0 < j c f l l.

~~~~ k=i 1 n , j +k — —

The deflated polynomial can also be expressed 
in terms of powers of x/x.,

Q (X) 
— 

Q ( x ) 
______ — 

Q (x) ~ k

or 

- X
j 1 - ~~~

— 

— - 

~Cj k=0

~~ 
Cn,j

X
~ 

= - (
~ ~~~ [~ 

x 
l)

xk]

15
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F This yields

• 
. = - ~~ ~~~~~~~~~~ 

, 0 < < n - 1

k=O 
n ,)—k —

Since xj is a root of Q~ Cx), from_which it follows that (X 
- 

xi) is a

factor of Q~ (x), all coefficients Cn,j for ~ 
< 0 or i > n — 1 must

vanish. Hence, any question of convergence disappears. Either of the

• two formulas developed for C . can be used. The first formula,

• n—j

~~~ 
. =

~~~~~~~~ 

~k l ~
• k=l 1 n ,j + k

involves n - 

~ 
terms, and the second formula,

— ~ — ( k +l)
C .~~~~~~~~~~~~~~~~~~~ x. C .

k=0 
1

involves j + 1 terms. Thus, the preference of one formula over another

depends on n and j. The second formula involves fewer terms when

j < (n—l)/2.

Once the ~~~~ 
have been obtained, the rest of the calculations are

fairly straight!orward. The integral in question can be reduced to a

sum:

bQ (x) n-l b . n-i

f 
~~~~~~~ ~~ 

wCx ) dx = E c~~,f x~wCx ) dx = ~~~

a 1 j=O a

Finally, the weights are given by

n- 1

~j=0 fl ,) J
H. =
1 n-i .

x~
3-

16
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A routine to calculate {x i} and (H j} has been written in FORTRAN H
Extended (IBM). A listing of the routine (called QINTEG) is included in

• appendix A. Instructions for its use are included as comment lines
prefacing the body of the main subroutine.

A word about the numerical accuracy of the algorithms developed in
this section is in order. QINTEG was executed to ~roduce quadrature
coefficients for several weighting functions, including those to be pre-
sented in the next section. Errors affected the accuracy of the quadra—
ture coefficients for n > 

~O. The errors were not measured, but relative
errors on the order of 10 to lO~~ ~n the abscissae and the weights were
noted for certain weighting functions. (These were observable because a
weighting function symmetric about the midpoint of the interval should
produce abscissae and weights that also are symmetric about the
midpoints.) The most likely sources of error were in the recursive

• computation to produce Q~ (x) and in determining the roots of Q~(x). The
recursion is a forward formula, so errors tend to accumulate. The
accuracy of the roots is suspect because, whereas the rest of the
computation was done in quadruple precision (128 bits) on an IBM 370/168
computer , only double precision routines for finding roots were
available. Although the question of numerical errors deserves
consideration before QINTEG is extensively used, our application (sect.
4) did not place stringent demands on the algorithm. Thus, the program
is presented as we used it.

This section has detailed the calculations necessary to obtain
abscissae and weights for general Gaussian integration. A FORTRAN
program for carrying out these calculations is presented in appendix A.
Aside from the restriction from the theory that the weighting function
w(x) be everywhere the same sign , ~ practical restriction on the
weighting function is introduced in thij section. The restriction is
that the values of the integrals.f

bxiw(x) dx for 0 < i C 2n — 1 must be
available (or at least much easier to calculate than the original
integral). To exemplify the use of QINTEG, section 4 presents the
algebra necessary to remove an oscillatory factor from an integrand.

4. F0URIER-LI1~ INTEGRALS

This section considers integrals of the form

b

f 

eif~~~g (x) dx , Ci • VCj)

17
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where f (x) and g( x) are real-valued functions of a real variable . The
real and imaginary parts are integrated separately. With the more popu-
lar integration schemes, numerical problems of efficiency arise when
If(b) — f ( a )  I >> 21T since a large number of samples of the integrand must
be taken because of the highly oscillatory nature of the exponential.

Assuming that f Cx) is uniquely invertible on [a,b], we may make the
change of variables y =

e ’g(f 1 (yfl (f 1 (y)]~ dy

where A = f Ca) and B = f(b). When the integrand, apart from the çxpo—
nential , is relatively slowly varying on (A ,B ) ,  absorbing the term e~~’ in
a weighting function considerably increases the efficiency for estimating
the integral.

To apply the algorithms of the last section, the integral must be
broken into several problems. First, let

l B — A l
M = L  21~~J ‘

the number of complete cycles of the eiponential in LA ,B). Then the
integral is

B A+2 iM . Bf 1Y~~~ dy = e’~
’F(y) dy +f e

1
~
’F(y)

A A+2wm

where

F(y) = g[f~~~~(y) ][f ~~~~Cy)]
’

for brevity. The integral from A + 211M to B is over less than one cycle
of the exponential, so the real and imaginary parts can be - integrated
efficiently by available routines. For future reference, this integral
is defined as the quantity Ii :

~~~ 1

B 

e~~
’F(y) dy

A+2wM

18
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For the other integral ,

‘A 
ei~

1
F(y) dy 

1

2irM 
e 

x+A)
FCx+A ) dx

2wM
i A(  ix

= e J e F(x+A ) dx
0

To integrate the real or imaginary parts of this integral using cos x or
sin x as a weighting function, one cannot apply the results of section 3,
since the weighting function must be everywhere positive. However, this
next integral can be evaluated

+2w14 2irM 2itM
1.A 

•
iYp (y) dy e~

A 
[j 

(i + i + e~”)F(x + A) dx — (1 + i) j F(x + A) dx]

We now define

2irM
— Re
{f 

(1 + i + e~~~)F(x + A) dx}

2~M
— f (1. + cos x)F(x + A) dx

0

( 2 nM .

13 — un f (i + i + e
1
~C)F(x + A) dx

2-irM
= f Cl + sin x)F(x + A) dx ,

2i,M—f F( x + A) dx

Then the original integral is given by

f

b
e
if(x)

g (x) dx — I~ + 
iA

11 — + i( 13 — Ii)}

19
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The integral I~ does not involve an oscillating factor in the integrand,
so it can be evaluated by standard methods, lust as I~ .

The parts of the original integral still to be considered are

21174f (1 + cos x)F(x + A) dx
0

and
, 2 ivM

J (1 + sin x)F(x + A) dx.
0

To obtain quadrature coefficients by u~ing 1. + cos x or~~ + sin x as
weighting functions, values for J

2~~ x~ Cl 4 cos x) dx arid J M XIC1 + sin
x) dx must be supplied for all integer values of I up to 2n - 1, where n
is the order of polynomial approximation to be used for F in (A , A +

2irM). To obtain a recursion relationship for these values, one can
integrate by parts for each weighting function.

For the weighting function 1 + cos x, integration by parts twice
yields

fx
1cos x dx — it

1 sin x + jx1 1  cos it - 1(1 + 1) fit
1 2 cos it dx

valid for j  > 1. Thus ,

— x~ ( l  + co. it) dx

— 1
2TM 

~~~ ~~~ + j2wM ~
i cos it dx

— ;

i 1
, ~ 

+ • ~ + ~. — — ~~~

— .L !.~1~2~~! + — — i j
21!M 

~~~~~~~ ~~~~~ ~~ dx

• + j ( 2tM)~~~
1 — - ~~ (i:~ 

~~~ —2 ~~~ + ~ COS it dx — ~~~~ dx)

— 
(~~fl4)~~~

1 
+ ~(2i?M)~~~ — — 1) 

[~~
_2 

— 
(2~M) i_1]
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or , finally (for a weighting function w (x) 1 + cos x ) ,

E . — 
C 2 M ~~~

1 
+ 2j (2n M ) 1 ‘ — 1( 1 — l)E1_2 , j > 1

For i = 0 and j  = 1, E
1 

can be evaluated directly :

2wM
E o = j  (l+cos x) dX 2ITM ,

• 2trM (2~M)2Ej = f x(l + cos x) dx = 2 
•

These relationships can be used directly to obtain quadrature coeffi-

cients for 12 using QINTEG.

The same procedure can be carried out for 13, with a weighting f~ñ~c—

tion w(x) = 1 + sin x. Integration by parts yields

fx~ si n x d x
_xJ c osx+ jx

i_l
sinx ici

_
l)Jx~~

2
sin x dx~~ i > l

Thus ,

• i:~ 
x~ 1 i + sin x) dx

— x~ dx + J~ 14 x~ Sifl x dx

— 
x 1

~~~ 12~
M 

+ ~ ~~~~ ~ + ~~~~~~~~~ .~~~ ~
) 

~ 
— ~~ j

2~ M x~~
_2 

sin x dx

— 
(2wt4~~~~ — (21rM)~ — 1) 

(f:~
M , 2 ~~~ + ~~~ 

— j
2lTM 

C~~~
2 
dx)

— — ( 21TM)~ — j(j — 1) 
[E~~2 

— 
(25M) 3 1 ]

or , f inally,

= 
(2 1~M)

1’
~
1 

— (2 1!M) 1 
+ j(21tM)1 1  — j(j — l)E1 2  , j > 1 .
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F o r j = O a n d j =1 ,

2irM
Eo =f (1 + sin x) dx = 2i~M

2nM C2 wM) 2
E 1 =f x(1 + sin x) dx = 

2 
- 2wM

0

These relationships can be used to obtain quadrature coefficients for
13 using QINTEG.

Tables I to VI show the abscissae and the weights for 10—point
Gaussian integration using these weighting functions for M = 10, 20 , 40 ,

80, 160, and 320. These coefficients were used in a numerical
integration routine to evaluate Fourier—like integrals. The routine was
a modification of FOGIE1 and used a similar algorithm, with interval
halving10 and extrapolation of the sequence of approximations 11 to
accelerate convergence. The average execution for this routine on a set
of integrals with M varying from 0 to 40 was 70 t imes faster than FOGIE.
(The integrand was of the form [xf (B2 - x2)(x2_ A 2)}~F1.) Thus, despite
the added complexity of having to solve four integrals (Ii to It,)~ rather
than two (the real and imaginary parts of the original integral), the
approach used in this report produced a routine vastly more efficient
than any available numerical integration routine known to the author.

1A. Hausner and J. D. Hutchinson, FOGIE : An Adaptive Code for
Numeri cal Integrals Using Gaussian Quadrature , Proc . 1975 Army Numeri ca l
Analys is and Computer Conf erence , Army Research Of f i ce Report 75- 3
(1975), 139—1 77.
1°C. deBoor , On Writing an Automatic Integration Algorithm, Mathe-

matical Software , John R. Rice, ed., Academic Press, New York (1971),
201—209.

11C. deBoor , CADRE: An Algorithm for Numerical Quadrature , Mathe-
matical Software, John R. Rice, ed., Academic Press , New York (1971),
41 7—449.
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TABLE I. ABSCISSAE AND WEIGHTS FOR GAUSSIAN INTEGRATION WITH WEIGHTING
FUNCTION w ( x ) :  10 CYCLES

w(x) = 1 + cos it w(x) = 1 + sin x

Abscissa Weight Abscissa Wei ght

0.6087374711 2.6807763508 0.8752104673 3.3695813000
4.9914285101 4.6772747988 3. 7865818792 3.7269621119

10.3820693807 6.4545355569 9.4717013503 7.0544987207
17.8773971242 8.3559383986 17.3092678040 8. 5022382935
26.7555983405 9.2474011736 26.2502048248 9.2561454163
36.0762547313 9.247401 1736 35.55639 15932 9.2 184344844
44 .9544559472 8. 3559384005 44.4130198287 8.3639907442
52.4497836920 6.4545355550 52.0734054498 6.9040953344
57.8404245609 4.6772747996 58.3063199301 5.6632258042
62.2231156010 

- 
2.6807766076 62.2510452612 0.7726807607

TABLE II. ABSCISSAE AND WEIGHTS FOR GAUSSIAN INTEGRATION WITH
WEIGHTING FUNCTION w (x): 20 CYCLES

w(x )= 1+co s x w(x)=1+sin x

Abscissa Weight Abscissa Weight

1.0958562160 3.8509782861 1.4073606532 5.3746551037
8.2760859072 9.5999529851 8.6742392405 9.3783293959
20.0439789573 13.8180757985 20.2902602865 13.7154348092
35. 5441895125 16.9568219659 35.7047378274 16.8806675057
53.4589364414 18.6060242108 53.5465988868 18.5354461291
72.2047697025 18.6060242108 72.2239429478 18.5399805836
90.1195166298 16.9568219727 90.0760264722 16.8978671035
105.6197271888 13.8180757925 105.5191712220 13.7582591895
117.3876202339 9.5999529878 117. 1642946953 9.2992491276
124.5678499286 3.8509781097 123.3816739078 3.2838176515
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TABLE III. ABSCISSAE AND WEIGHTS FOR GAUSSIAN INTEGRATION WITH
WEIGHTING FUNCTION w (x): 40 CYCLES

w(x) = 1 + cos x w(x) = 1 + sin x

Abscissa Weight Abscissa Weight

2.8183314516 7.8585900665 2.6565132959 8.9339537867
16.4855928817 18. 8804230134 16. 5290556985 18. 7939382658
39.9253416820 27.6523406643 39.8338445222 27.4824982790
70.9730313642 33.9801300369 70.6882254019 33. 7669783574

106.8772903925 37.2922221234 106.3662919383 37.0563538843
144.4501218949 37.2922221234 143.7002563722 37.0535973607
180.3543809222 33.9801300425 179.3720458652 33.7562834074

• 211.4020706062 27.6523406611 210.2072642327 27.4506937547
234.8418194051 18.8804230133 233. 4447939120 18.6623839329
248. 5090808355 7.8585903048 246.9679666228 8.3707313204

TABLE IV. ABSCISSAE AND WEIGHTS FOR GAUSSIAN INTEGRATION WITH
WEIGHTING FUNCTION w(x): 80 CYCLES

w(x) = 1 + cos x w (x) = 1 + sin x

Abscissa Weight Abscissa Weight

6.2942643908 16.4238170553 5. 7276955655 16.9957022744
33.5952185179 37.6003753926 33.1561465055 37.5586612404
80.3173832187 55.1422003060 79.7934759820 55.0262214933
142.2390857322 67.7755507792 141.5795832699 67.6238618053
213.8546984578 74.3854676502 213.0334404429 74.2164516187
288.8001261154 74.3854676502 287.8080856863 74.2156211234
360.4157388472 67 .7755507526 359.2600654194 67 .6206860473
422.3374413443 55.1422003333 421.0406014177 55.0171626627
469.0596060704 37.6003753744 467.6598685263 37.5250478206
496.3605601771 16.4238181702 495.0025963240 16.8554086052
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TABLE V. ABSCISSAE AND WEIGHTS FOR GAUSSIAN INTEGRATION WITH WEIGHTING
FUNCTION w(x): 160 CYCLES

w ( x )  = 1 + cos x w(x) = 1 + sin x

Abscissa Weight Abscissa Weight

12.9796420057 33.336012366 1 12. 1936860013 33.6189092406
67.6552243405 75.1396513709 66.9327500610 75.1180427176
161.0067973988 110.1674325314 160.2388236537 110.104~290787
284.7166120591 135.4035687063 283.8747879464 135.3207702919
427.7914246520 148.60815844 99 426.8612580903 - 148.5158506231
577.5182244980 148.6081584499 576.4948799015 148.5156416467
720. 5930370840 135.4035687338 719.4808781000 135.3199727513

844.302851 i1 1 110.1674325082 843.1154468964 110.1022657342
• 937.6544247963 75. 1396513680 936.4170389156 75. 1097518556

992.3300071481 33.3360135411 991.1349134249 33.5839141270

TABLE VI. ABSCISSAE AND WEIGHTS FOR GAUSSIAN INTEGRATION WITH

WEIGHTING FUNCTION w(x): 320 CYCLES

w ( x )  = 1 + cos x w ( x )  = 1 + sin x

Abscissa Weight Abscissa Weight

26. 1632634886 66 .9356733119 25.2697701457 67.0746046124
135.5658268848 150.2531469489 134.7018077959 150.2417920174
322.2213469950 220 .2712914684 321.3339328777 220.2390735954
569.5670711729 270.7247214675 568.6418609881 270.6823636132
855.6289767982 297.1248171845 854.6585865153 297.0776244037
1154.9903215015 297.1248171845 1153.9723172997 297.0775722417
1441.0522271171 270.7247215075 1439.9889249782 270.6821644543
1688.3979513144 220.2712914419 1687.2965048290 220.2385090728
1875.0534714023 150.2531469488 1873.9275134964 150.2397288068
1984.4560348127 66.9356720769 1983.3552710669 67.0658633200
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5. SUMMARY

This report presents a program to compute Gaussian quadrature coeffi-
cients for integration with respect to a weighting function. The purpose
of developing this program was to combat the inefficiency of existing
numerical integration routines in evaluating integrals with oscillatory
integrands. However, the technique of absorbing undesirable behavior of
integrands into the weighting function can be applied to many other prob-
lems. Specifically , discontinuities or singularities within the interval
of integrationS generally preclude the use of many programs and produce
unreliable results in most other programs . When such behavior can be
absorbed in the weighting function , the coefficients computed by QINTE G
can be used to produce reliable estimates more efficiently.

The program was written to be usable in a variety of problems. The
user must allocate storage in the calling program and supply one subrou-
tine to QINTEG. That subroutine must compute Es--the moments of the
weighting function. Then QINTEG returns to the calling program the
abscissae and the weights for estimating integrals. The only restric-
tions on the weighting function (for finite intervals) are that it be
nonnegative (or equivalently, nonpositive) throughout the interval and
that Ej must all exist.

This technique was applied to the integration of Fourier—like
integrals. When compared with the time of an existing numerical
integration routine, FOGIE, the execution time decreased by a factor of
70. Since FOGIE is fairly efficient, ’ in many problems the benefits of
using QINTEG more than balance the difficulties of understanding its use.
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APPENDIX A. --QINTEG COMPUTER PROGRAM LISTING

This appendix lists computer program QINTEG that computes Gaussian

quadrature coefficients for integration with respect to a weighting

function. 
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APPENDIX A

SUBROUTINE QINTEG (N ,1,.,C,E,H,C1,l,U SERL ) 00000100
C 00000200
C PURPOSE 00000300
C THIS SUBROUTINE COMPUTES ABSCISSAE AND WEIGHTS P0k GAUSS IAN 00000400
C I NTEG RATION OVER AN ARB ITRARY INTERVAL WITH A USER—DETERM INED 00000500
C WEIGHTING FUNCT ION. THAT IS, IT COMPUTES 1(1) AND W ( I ) ,  00000600
C I=1,...,N TO APPR OXIMATE 00000700
C 00000800
C B 00000900

• C / N 00001000
C I 00001100
C I F~~X)G(X) Dl = SUM W (I)G4l(I)) 00001200
C 1 00001300
C / 1=1 00001400

• C A 00001 500
C 00001600
C U SAGE 00001700

• C THi S SUBROUTiNE is INVOKED WITH THE SEQUENCE 00001800
C REALS 1S X ,W ,C,E,H ,R 00001900
C REAL *H C I 00002000
C EXTERN AL USENE 00002100
C • 00002200
C • 00002300
C • 00002400
C CALL QJNTECIN ,X ,W ,C ,E,H ,C1, k,USE RE ) 00002 500
C 00002600
C ARG UM ENTS 00002700
C N — INTEGER *4 INPUT SCAL.AR . THE DESIRED NUM BER OP 00002800
C SUMMATION POINTS AND WEIGHTS. 00002900
C I — REAL*16 OUTPU T ARRAY. THE SET OP AHSCISSAE . 00003000
C M UST BE DI M ENSI ONE D ~ I N TH E CA LLIN G P R O GRA M .  00003100
C W — REAL*16 OUTPUT ARRAY. THE SET OP WEIGHTS. 00003200
C MUST BE DIMEN S I ONED N 1’4 THE CALLING PROGRAM. 00003300
C C — REAI.S16 WORKING ARRAY . MUST BE D IMENSIOPED 00003400
C (N41) (N+2)/2 IN THE CALLING PROGRAM. 00003500
C S — REAL *L6 WOR K ING AR RAY. MUST BE D IMENSIONED 00003600
C 2N IN THE CALLI NG PR O GRA M .  00003700
C II ,R — REAL*Ib W ORKING ARRAYS. MUST BE DIMENS IONED 00003800
C N IN THE CALLING PROGRAM . 00003900
C Ci — REAL.*R WORK ING ARRAY. MUST BE DIMENSIONED IM+I ) 00004000
C IN THE CALLING PR OGRAM . 00004100
C USERS — USER SUPPLIED ROUTINE NAME. USED TO COMPUTE 00004200
C VALUES UP ARRAY E~ A S DESCR IBED BELOW . THE 00004300
C N AME OF ‘USEPE ’ MUST BE DECLARED EXTERNAL IN 00004400
C ThE CALLING PROGRAM. 00004500
C 00004600
C SUBROUTINES USED 1* INDICATES 1107 INCLUDED IN THIS MODULE ) 00004700
C POLY 00004800
C *ZPOI.R IIVS L DOUBLE PRECISION LIBRARY ) 00004800
C *‘USERE’ 00005000
C 00005100
C SUSROUI INE ‘USERE ’ IS DEFINED BY THE USER . 00005200

IT IS CALLED BY ‘POLY ’ WITH THE CALLING 00005300
C SEQuENcE: 00005400
C CALL USPRE(M ,E,ICODP.) WHERE N IS SET TO 2*14. 00005500
C ‘USERS’ MUST HAVE THE FOLLDIING pROGRAMMING: 00005600
C SUBROUTINE USERE(M ,E ,IC ODE ) 00005700
C REAL*Ib 5(11 ) 00005800
C 00005800

30
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C 00006000
C 00006100
C R E T U R N  00006200
C END 00006300
C ‘USE R S’  MUST COM)~UTE VALUES OF ARRAY •E~ SUCH THAT: 00006400
C IF ICODE=O ON R E T U R N , ELEMENT EU) CON TA IN S THE INTBG RAL 00006500
C CF P(I)S(I**(i— 1)) OVER THE I NTERVAL OP INTEGRATION POR 00006600
C 1<= I<=W . 00006700
C IF ICODE>O ON RETURN , ELEMENTS E(l),...,E (M/2) CONTAIN 00006800
C TEE INTEGRAT ION ABSCISSAE AND ELEMENTS E(M/2+1),...,E ( M ) 00006900
C CONTAIN THE INTEGRATION WEiGHTS. 00007000
C 1? ‘USERS’ RETURNS ICODE~ O , TEE REST OF T H I S SUBR OUT I N E  00007100
C CONPUTES THE WEIGHTS AND ABSCISSAE. 00007200
C 00007300
C PROG RAM NOTES 00007400
C THE PURPOSE OF THE RETURN CODE FOR ‘USERS ’ IS To ALLOW THE 00007500
C WORK DON E IN THIS SUBROUTINE TO BE DONE NO MORE OFTEN THAN 00007600
C NECESSARY. ONCE THIS SUBROUTINE COMPUTES 1145 WEIGHTS AND 00007700
C ABSCISSAE FOR A PARTICULA R COMB INATION OF PARAMETERS (PASSED 00007800
C TO ‘USERS ’ IN COMMON PROW THE MAIN PROG RAM), THIS I NFORMAT ION 00007900
C CAN, IN CERTA IN APPLICATIONS , ALSO BE PASSED TO ‘USERE’ SO THE 00008000
C OVERHEAD OP PERFORM ING THE CALCULATIONS CAN BE AVOIDE D WHEN 00008100
C THE RESULTS ARE NEEDED AGAIN. 00008200
C 00008300
C RE STRI CTI ON S 00008400
C THE WEIGHTING FUNCTION F IX ) MA Y NOT CHANGE SIGN OVER 00008500
C T HE I N T E R VA L OP INTEGRATION. 00008600
C 00008700
C REFERENCES 00008800
C BECK M AN , P . ,  ORTN000NAL FUNCTIONS FOR ENG I NEERS AND 00008900
C PHYS I CIST S ,0 GOLEM PRESS , BOU LDER , CO L. ,  1973. 00009000
C HDL LAB ORATORY NOTEB OOK 7609 , PP. 34-42 . 00009100
C 00009200

• C AUTHOR AND MODIFICAT I ONS 00009 300
C TED NOPP 7/24/7? 00009400
C 8/08/78 — INCLUDE OPTION FOR TABLE LOOKUP 00009500
C OF ABSCISSAE AND WEIGHTS.  00009600
C 00009700

REAL S1D c t 1 ) , E I i ) , N I 1 ) , Z U ) , W ( I ) , o  00009800
• R E AL *8 c l ( I )  00009900

COW PLEX*I6 RU )  00010000
C 00010100
C CALQILATE COEFFI. IENTS AND E ARRAY FOR N—TN DEGREE POLYNOMIAL 00010200
C 00010300

CALL USERE (2*N ,!,ICOOE ) 00010400
IF (IcODS.GT.0) 00 TO 60 00010500
CALL POLY (N ,C,E,H,W ) 00010600

C 00010700
C CALCULATE ROOTS OF POLYNOMIAL — COPY COEFFICIENTS INTO DOUBLE 00010800
C PRECISION A RRAY Cl 00010900
C 00011000

N 1 t 1+I 00011100
DO 5 1=1 ,141 00011200
C 1I I ) ~~~ ( I )  00011300

5 CONTINUE 00011400
CALL ZPOLR (C1,N ,R ,IER ) 00011500
IF (IER.L.T.129 ) GO TO 10 00011600
WR ITE (6,6000 ) IER ,(R(I),I=l ,~~) 00011700

6000 FORMAT I’ IER=’ ,IS,’. R0OTS:’/(1X ,l p2DlS.8)) 00011800
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STOP 0001(900
C 00012000
C FOIl EACH ROOT 1)0 THE FOLLOWING 00012100
C 00012200
10 DO SO I 1 , N 00012300

X (I)=DREALIR (I)) 00012400
C 00012500
C DEFLATE POLYNOMIAL — USE MOST EFFICIENT CALCULATION FOR EACH 00012600
C COEFFICIENT. 00012700
C 00012800

• J2 N/2  00012900
DO 20 .1=1 ,32 00013000

• II(J )=O.qO 00013100
Do 20 1 1 ,J 00013200

• L $+2-.1 00013300
H ( J ) ( N ( J ) - C ( L ) ) / X ( I )  00013400

20 CONTINUE 00013500
C 00013600
C CHAN GE FORMULA FOR COEFFICIENTS 00013700
C 00013800

J2=J241 00013900
.j 3=N—1 00014000
DO 30 j =J 2,J 3  00014100
H ( J ) C 1 1 )  00014200
11 14—J+l 00014300
DO 30 1=2,11 00014400
H(J) 1(I)*R(J)+CIK) 00014500

30 CONTINUE 00014600
H(M) C(l) 00014700

C 00014800
C EVALUATE WEIGHT 00014900
C 00015000

0C111*QFLOATIN) 00015100
, ( l) H ( 1 ) S E ( l )  00015200
DO 40 j =2 ,N 00015300
0=11 1 )*Q ,c (.T)*QFLOAT(N—J+1) 00015400
W(I )=W( I).H(J)*E(J) 00015500

40 CONTINUE 00015600
W (I) W (I)/O 00015700

SO CONTINUE 00015800
RETURN 00015900

C 00016000
C ABSCISSAE AND WEZOIITS SUPPLIED BY ‘USERS’ 00016100
C 00016200
60 DO 70 j 1 ,N 00016300

K N+J 00016400
X ( J ) E ( J )  00016500

00016400
70 CONTINUE 00016700

RETURN 00016800
END 00016900
SUBR OUTINE POL .YIN ,C,E,H ,II ) 00017000

C 00017100
C PURPOSE 00017200
C THI S PROGRAM COMPUTES COEFFICIENTS OF ORTHOGON A L  POLYNOMIALS. 00017300
C SEE LABORATORY NOTEBOOK 7609 FOR DETAILS OP TIlE DERIVATION OP 00017400
C THIS cODE. 00017500
C 00017600
C USAGE 00017700
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C CA LL P O L Y ( N ,C ,B , H , B) 00017HO 0
C 00017900
C ARGUMENTS 00018000
C N — INTEGER*4 INPUT SCALAR . THE DEGREE OF THE DESIRED ORTHOGONAL 000(8100
C POLYNO M IAL.  - 0001fl200
C C — R EAL *16 OUTPUT A R R A Y .  ON OUTPUT , C (L)...CIN,I) CONTAIN THE 00018300
C COEFF I CIENTS OF THE N—TH DEGREE POLYNOMIAL IN ORDER OP 00018400
C DECRE A SING POWER OP THE V A R I A B L E .  THIS  ARRAY HO ST BE 0001850 0
C D I M E N S I O N E D  ( N + 1 ) ( N , 2 ) / 2  I N  TH E CALLING PROGRA M . 00018600
C S — R EA L * 16 INPUT ARRAY . ELEMENTS OP THIS ARRAY APE COMPUTED 00018700
C BEFORE THIS SUBROUTINE IS  CALLED. THE E L EMENT 5 ( 1)  00018800
C CONTAINS TEE INTEGRAL OVER THE ORTHOGONALITY INTERVAL 00018900
C OP W ( X ) * ( X * * I 1— 1 ) ) ,  WHERE W ( X )  IS THE ORTH 000NALITY 00019000
C WE I GHTING FUNCTION . TO COMPUTE THE N-TN DEGREE POLY— 00019100
C NOMIAL,  VALUES OP E I I ) . . . B ( 2 N )  MUST BE SUPPLIED. 00019200
C H — REAL *16 WORKING A R R A Y .  T H I S  ARRAY IS USED AS WORKING 00019300
C STORAGE. IT MUST HAVE AT LEAST N ELEMENTS. (ON OUTPUT , 000194 00
C THE VALUE OP u ( 1 )  W I L L  BE TEE NORM OF THE ( 1—1)—ST 00019500
C DEGREE ORTHOGONAL POLYNO M iAL.)  00019600
C B — WE AL *16 WORKING A R R A Y .  TillS ARRAY 15 USED AS WORKING 00019700
C STORAGE. IT MUST HAVE AT LEAST N ELEMENTS. 00019800
C 00019900
C SUBROUTINES USED (* INDICATES NOT INCLUDED TN T H I S  MODULE ) 00020000
C NON E 00020100
C 00020200
C P ROGRAM NOTES 00020300
C STORAGE IN ARRAYS C, H , AND B IS AS FOLLOWS: 00020400
C C — THE COEFFICIENT OF 1*63 ZN THE I—T B ORTHOGONAL POLYNOMIAL 00020500
C I S  STORED I N C ( 1 + J + I * ( 1 + t ) / 2 )  D U R I N O  EXECUT I ON OF THIS  00020 600
C ROUTINE.  BEFORE E X I T , THE COEFFICIENTS OP THE N—TN 00020700
C DEGREE POLYNOMIAL ARE MOV ED TO C(i),...,C(N.1) iN  ORDER 00020800
C OF DECREASING POWER OP I. 00020900
C H — TIl E VALUE OF H FOR THE I-TN ORTHOGONAL POLYN OM IAL I S  00021000
C STORE D LII f f 1 1. 1, .  00021100
C B — THE VALUE OP B FOR TH E I—TB ORTHOGONA L POLYNOMIAL IS 00021200
C STORED IN B ( I + I ) .  00021300
C 00021400

RLAL *16 H (1), H(1 ),E(1) ,C (1) 00021500
C 00021600
C INITIAL IZE FOR CALCULATING COEFFICIENTS 00021700
C 00021800

CI1)=1 .QO 00021900
H h l ) E ( 1 )  00022000
B 1 I ) E1 2 )/ ff I I )  00022100
C ( 2 ) — B ( 1 )  00022200
C ( 3 ) 1.QU 00022300
1=1 00022400

C 00022500
C BEGINN ING OF RECURSION LOOP — POLYNOMIAL OF DEGREE 1 OBTAINE D 00022600
C 00022700
10 11= 1+1 00022800

iF ( I . G E . N )  GO TO 50 (10022900
C 00023000
C COMPUT E VALUE OF H FOR POLYNO M I AL OF DEGREE 1 00023100
C 00023200

H ( I 1 ) 0.O0 00023300
DO 20 3 2= 1 , 11 00023400
L I + J 2  00023500
M J 2 + ( t S I l ) / 2  00023600
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H (IL)=ll(11).C(M)*E(L) 00023700
20 CONTINUE 00023800

• C 00023900
C COMPUTE VALUE 01’ B FOR PO L YNOMIAL OF DEGREE I 00024000
C 00024100

• B IL l )=0.Q0 00024200
DO 30 .12=1,11 00024300
L=32+II 00024400
M J2,(I*I1)/2 00024500
B (I1 ) B(I1) ,C~ M )*E (L) 00024600

.30 CONTINUE 00024700
k (I*(I+3))/2 00024800
H(11)~~8(Tl)/H(I1)+C (w) 00024900

C 00025000
- C COM PUTE COEFFICIENTS FOR NEXT HIGHER DEGREE POLYNOMIAL 00025100
C 00025200

J1 1 00025300
1=11 00025400
L 1 + (1*(I+l))/2 00025500

00025600
J=1+ (J1*(1—2))/2 00025700
C (L)=—B(l)*C(M)—fl (1)*C(JlI’u(Jll 00025800
DO 40 32=2,3 1 00025900
LrJ2+ (I*(L+I))/2 00026000
M J2+ (I*J1)/2 00026100
J=J2 .IJ1*(I—2 ))/2 00026200
CIL ) C(M—1)—BII)*C (M)—B(l)*CIJ)/H (I—l ) 00026300

40 CON T I N U E  00026400
L (L* (I+3))/2 00026500
M (T* (I,l))/2 00026600
C(L ) C(M—i )—B I1)*CIM) 00026700
C (L .1)=C(N) 00026800
GO TO 10 00026900

C 00027000
C PLACE COEFFICIENTS FOR N—T1L DEGREE POLYNOMIAL iN C (i)...C(Nsl) 00027100
C IN DESCENDIN G ORDER 00027200
C 00027300
50 DO 60 . 12 = 1 , 1 1  00021400

L=2—J2+ (N*IN+3) 1/2 00027500
C.(J2 ) C (L) 00027600

60 C O N T I N U E  00027700
RETURN 00021800
END 00027900
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